close
標題:
三角比上的問題
發問:
3sinx+4cosx=1 求x的值 及其步驟
最佳解答:
假設所求 x 的範圍是: 0° < x < 360° 方法一: √(32 + 42) = 5 3 sin x + 4 cos x = 1 (3/5) sin x + (4/5) cos x = 1/5 cos 53.13° sin x + sin 53.13° cos x = 1/5 sin (53.13° + x) = 1/5 53.13° + x = (180 - 11.54)°, (360 + 11.54°) x = 115.33°, 318.41° 方法二: 3 sin x + 4 cos x = 1 3 [2 sin (x/2) cos (x/2)] + 4 [cos2 (x/2) - sin2 (x/2)] = cos2 (x/2) + sin2 (x/2) 5 sin2 (x/2) - 6 sin (x/2) cos (x/2) - 3 cos(x/2) = 0 [5 sin2 (x/2) - 6 sin (x/2) cos (x/2) - 3 cos(x/2)] /cos2 (x/2) = 0 5 tan2 (x/2) - 6 tan (x/2) - 3 = 0 tan (x/2) = (3 + 2√6)/5 或 tan (x/2) = (3 - 2√6)/5 x/2 = 57.666° 或 x/2 = (180 - 20.797)° x = 115.33°, 318.41°
其他解答:
三角比上的問題
發問:
3sinx+4cosx=1 求x的值 及其步驟
最佳解答:
假設所求 x 的範圍是: 0° < x < 360° 方法一: √(32 + 42) = 5 3 sin x + 4 cos x = 1 (3/5) sin x + (4/5) cos x = 1/5 cos 53.13° sin x + sin 53.13° cos x = 1/5 sin (53.13° + x) = 1/5 53.13° + x = (180 - 11.54)°, (360 + 11.54°) x = 115.33°, 318.41° 方法二: 3 sin x + 4 cos x = 1 3 [2 sin (x/2) cos (x/2)] + 4 [cos2 (x/2) - sin2 (x/2)] = cos2 (x/2) + sin2 (x/2) 5 sin2 (x/2) - 6 sin (x/2) cos (x/2) - 3 cos(x/2) = 0 [5 sin2 (x/2) - 6 sin (x/2) cos (x/2) - 3 cos(x/2)] /cos2 (x/2) = 0 5 tan2 (x/2) - 6 tan (x/2) - 3 = 0 tan (x/2) = (3 + 2√6)/5 或 tan (x/2) = (3 - 2√6)/5 x/2 = 57.666° 或 x/2 = (180 - 20.797)° x = 115.33°, 318.41°
其他解答:
此文章來自奇摩知識+如有不便請留言告知
63D0B758E2D502CC文章標籤
全站熱搜
留言列表